Estimates for Tamagawa numbers of diagonal cubic surfaces

نویسندگان

  • Andreas-Stephan Elsenhans
  • Jörg Jahnel
چکیده

For diagonal cubic surfaces, we give an upper bound for E. Peyre’s Tamagawa type number in terms of the coefficients of the defining equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tamagawa numbers of diagonal cubic surfaces, numerical evidence

A refined version of Manin’s conjecture about the asymptotics of points of bounded height on Fano varieties has been developed by Batyrev and the authors. We test numerically this refined conjecture for some diagonal cubic surfaces.

متن کامل

On the Smallest Point on a Diagonal Cubic Surface

For diagonal cubic surfaces, we study the behaviour of the height of the smallest rational point versus the Tamagawa type number introduced by E. Peyre.

متن کامل

Tamagawa Numbers of Diagonal Cubic Surfaces of Higher Rank

We consider diagonal cubic surfaces defined by an equation of the form ax + by + cz + dt = 0. Numerically, one can find all rational points of height 6 B for B in the range of up to 10 , thanks to a program due to D. J. Bernstein. On the other hand, there are precise conjectures concerning the constants in the asymptotics of rational points of bounded height due to Manin, Batyrev and the author...

متن کامل

Cubic spline Numerov type approach for solution of Helmholtz equation

We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...

متن کامل

Torsion and Tamagawa Numbers

Let K be a number field, and let A/K be an abelian variety. Let c denote the product of the Tamagawa numbers of A/K, and let A(K)tors denote the finite torsion subgroup of A(K). The quotient c/|A(K)tors| is a factor appearing in the leading term of the L-function of A/K in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008